Возбудитель дифтерии Corynebacterium diphtheriae, его характеристика и свойства


Возбудитель дифтерии - Corynebacterium diphtheriae был обнаружен, а затем выделен в чистой культуре 100 лет тому назад. Окончательное его этиологическое значение в возникновении дифтерии было подтверждено спустя несколько лет, когда был получен специфический токсин, вызывающий гибель животных при явлениях, сходных с наблюдаемыми у больных дифтерией. Corynebacterium diphtheriae относится к роду Corynebacterium, группе коринефромных бактерий. Corynebacterium diphtheriae представляют собой прямые или слегка изогнутые палочки с расширениями или заострениями на концах. Деление на излом и расщепление обеспечивают характерное расположение в виде римской цифры V или растопыренных пальцев, но нередко в мазках встречаются единично расположенные палочки. Большие их скопления, которые бывают в мазках, приготовленных из слизи зева, носа, раневого отделяемого, имеют войлокообразный характер. Средняя длина палочек их 1-8 мкм, ширина - 0,3/0,8 мкм. Они неподвижны, спор и капсул не образуют. Corynebacterium diphtheriae являются факультативным анаэробом. Дифтерийные палочки устойчивы к высушиванию. При температуре 60 °С в чистых культурах разрушаются в течение 45-60 мин. В патологических продуктах, т. е. при наличии белковой защиты, могут сохранять жизнеспособность в течение часа при температуре 90 °С. Низкие температуры не оказывают губительного действия на дифтерийные палочки. В дезинфицирующих средствах обычной концентрации они быстро погибают.

Необходимо отметить чрезвычайно большой полиморфизм дифтерийных палочек, проявляющийся в изменении их толщины и формы (вздутые, колбовидные, сегментированные, нитевидные, ветвящиеся), В концевых утолщениях, а иногда и в центральной части уже через 12 ч роста культуры при специальной окраске обнаруживаются зерна Бабеша-Эрнста, представляющие собой скопления волютина. Имеются данные, что волютин является длинно-цепочным неорганическим полифосфатом. М. А. Пешков предполагает их метафосфатную природу. А. А. Имшанецкий считает, что волютин является побочным продуктом обменных процессов. Известно, что для образования зерен необходим фосфор. Имеются предположения и о необходимости марганца и цинка для этого процесса.

Волютиновые зерна встречаются в суточных культурах, а затем число бактерий с наличием зерен снижается, В цитоплазме имеются также нуклеотид, внутрицитоплазматические мембраны - лизосомы, вакуоль.

Окрашиваются бактерии всеми анилиновыми красками. При окраске по методу Грамма - положительные. Для окраски волютиновых зерен используется метод Нейссера. При окраске этим методом зерна волютина, обладающие большим сродством к метиленовому синему, стойко окрашиваются в синий цвет, а из тела бактерии при дополнительной окраске хризоидином или бисмаркбрауном метиленовый синий вытесняется.

Возбудитель дифтерии - гетеротроф, т. е. относится к группе бактерий, требующих для своего роста органические вещества. Используемые для выращивания среды должны содержать в качестве источника углерода и азота аминокислоты - аланин, цистин, метионин, валин и др. В связи с этим элективными средами для культивирования являются среды, содержащие животный белок: кровь, сыворотку, асцитическую жидкость. На основании этого и была создана классическая среда Леффлера, а затем среды Клауберга, Тиндаля, среда накопления.

На среде Леффлера колонии дифтерийной палочки имеют блестящую, влажную поверхность, ровные края, желтоватую окраску. Через несколько суток роста появляется радиальная исчерченность колоний и слабо выраженные концентрические линии. Диаметр колоний достигает 4 мм. Первые признаки роста появляются после 6 ч пребывания в термостате при 36-38 °С. Отчетливо виден рост спустя 18 ч после посева. Оптимальное значение рН для роста дифтерийной палочки 7,6. Коринебактерии дифтерии очень часто трудно отличимы от других видов коринебактерии. Для определения вида используется комплекс культуральных и биохимических признаков.

Неоднороден и вид коринебактерии дифтерии, он подразделяется на 3 культурально-биохимических типа gravis, mitis, intermedins, на две разновидности - токсигенные и нетоксигенные, ряд серологических типов и фаготипов.

В настоящее время на большинстве территорий циркулируют два культурально-биохимических типа - gravis и mitis. Тип intermedins, который раньше выделялся также достаточно широко, последнее время встречается редко. Наиболее четко дифференциацию типов можно провести по форме колоний при выращивании культуры на кровяном агаре с добавлением теллурита. Колонии типа gravis через 48-72 ч достигают в диаметре 1-2 мм, имеют волнистые края, радиальную исчерченность и плоский центр. Их вид принято сравнивать с цветком маргаритки. Колонии матовые благодаря способности бактерии восстанавливать теллурит, который затем соединяется с образующимся сероводородом, серо-черного цвета. При росте на бульоне культуры типа gravis образуют на поверхности крошащуюся пленку. При посеве на среды Гисса с добавлением сыворотки они расщепляют полисахариды - крахмал, декстрин, гликоген с образованием кислоты.

Культуры типа mitis на кровяном агаре с теллуритом вырастают в виде круглых, слегка выпуклых, с ровным краем, черных матовых колоний. При росте на бульоне дают равномерную мутность и осадок. Крахмал, декстрин и гликоген они не расщепляют.

В мазках палочки типа gravis чаще короткие, а типа mitis более тонкие и длинные.

Сравнительное электронно-микроскопическое исследование дифтерийных палочек различных биохимических типов показало наличие у типов gravis и mitis трехслойной клеточной оболочки. Оболочка у типа intermedins двухслойная и почти в 3 раза толще. Между цитоплазмой и оболочкой имеются пространства, заполненные зернами, которые, возможно, имеют отношение к экзотоксину. Видна косая исчерченность бактерий, которую создают разделительные стенки между дочерними клетками. Хромосомный аппарат, у типов gravis и mitis представлен обычными зернами с вакуолями, у типа intermedins - распределен по всей цитоплазме. В электронном микроскопе видна многослойная оболочка, наличие которой объясняет, почему дифтерийные палочки иногда бывают грамотрицательными.

Колонии дифтерийных бактерий бывают в S-, R- и SR-формах, последние считаются промежуточными. Н. Morton считает, что колонии S-форм присущи типу mitis, SR-форм - типу gravis. Кроме этих основных форм встречаются колонии мукоидного типа - М-формы, карликовые колонии - D-формы и гонидиальные колонии - L-формы. Все они считаются формами диссоциативной изменчивости.
 
Дифтерийные бактерии необходимо отличать от дифтероидов и ложнодифтерийной палочки.

Большое количество исследований посвящено вопросам изменчивости дифтерийной палочки. Возможность возникновения атипичных форм в лабораторных условиях была подтверждена работами эпидемиологического профиля.

Признаваемая большим числом исследователей биохимическая, морфологическая, физико-химическая изменчивость дифтерийной бактерии затрудняет в ряде случаев бактериологическую диагностику, заставляет проводить комплексное изучение культур.

Мы распределили все культуры, выделенные в условиях различной эпидемиологической обстановки, на 8 групп; они включили все возможные морфологические варианты интересующих нас представителей коринебактерии:

1-я группа - короткие палочки, длиной около 2 мкм, без зерен;

2-я группа - короткие палочки, длиной около 2 мкм, но изредка с зернами;

3-я группа - палочки средней величины, длиной 3-6 мкм, шириной 0,3-0,8 мкм, без характерной зернистости;

4-я группа - палочки средней величины, длиной 3-7 мкм, шириной 0,3-0,8 мкм, слегка изогнутые, изредка с зернами;

5-я группа - палочки средней величины, длиной 3- 6 мкм, шириной 0,3-0,8 мкм, слегка изогнутые, зернистые;

6-я группа - длинные палочки, длиной 6-8 мкм, шириной 0,3-0,6 мкм, слегка изогнутые, изредка с зернами;

7-я группа - длинные палочки, длиной 6-8 мкм, шириной 0,3-0,8 мкм, обычно изогнутые, без зерен;

8-я группа - короткие, грубые палочки, длиной около 2 мкм, шириной около 1 мкм, без зерен.

Расположение палочек при распределении по группам не учитывалось, но обычно характерное расположение соответствовало морфологии.

В 1, 2, 3 и 8-й группах, которые соответствовали по морфологии палочкам Гофмана, расположение было групповое, параллельное или в виде единичных особей, в 4, 5 и 6-й группах, в основном соответствующих по морфологии истинным дифтерийным бактериям, палочки располагались под углом или в виде единичных особей. В 7-й группе палочки чаще располагались беспорядочно, переплетаясь между собой. В 8-й группе палочки располагались в виде единичных особей.

Из 428 изученных культур 111 по совокупности признаков должны были быть отнесены к истинным дифтерийным, 209 явились культурами палочек Гофмана и 108 составили группу атипичных культур. У культур, близких к дифтерийным, атипичность проявлялась в снижении биохимической активности, иногда в разложении мочевины; у культур, морфологически близких к палочкам Гофмана, в сохранении положительной цистеиновой пробы, способности разлагать один из сахаров.

Из 111 дифтерийных культур морфологически типичной была 81 культура (73%), 28 культур (27%) имели морфологию палочек Гофмана. Из 111 дифтерийных культур было 20 культур типа gravis и из них только 9 отнесены к 1 и 2-й морфологическим группам.

Культуры, которые были отнесены по совокупности признаков к культурам палочки Гофмана, в 20% случаев имели морфологию типичных дифтерийных культур.
К атипичным культурам отнесено 25% изученных штаммов, их морфология соответствовала как дифтерийным палочкам, так и палочкам Гофмана.

Таким образом, биохимические и морфологические свойства культур далеко не всегда совпадают, причем биохимическая атипичность, так же как и морфологическая, чаще наблюдается у культур, выделенных в период снижения заболеваемости, а значит, и снижения уровня носительства.

Необходимо отметить общее снижение биохимической активности культур за последние 10-15 лет. Показателем этого является запоздалая ферментация сахаров, наступающая иногда на 5-6-е сутки, а также различная биохимическая активность колоний одной и той же культуры.

Биохимическая идентификация чистых культур, выделенных в условиях различной эпидемиологической обстановки, показывает, что хотя морфология и биохимические свойства часто не совпадают, общий принцип распределения культур, установленный по данным морфологии, не изменяется. Как при распределении культур по морфологическим и биохимическим данным, так и при полной их идентификации с включением серологических реакций принцип распределения остается тот же: атипичные культуры чаще встречаются в период эпидемического благополучия, палочки Гофмана чаще обнаруживаются в период эпидемического неблагополучия и высеваются дольше истинных дифтерийных.

Изучение токсигенных свойств выделенных, культур на твердых питательных средах показало, что даже в период эпидемического благополучия встречается достаточное число носителей токсигенных дифтерийных палочек. Необходимо отметить, что токсигенные свойства не всегда удается уловить даже у культур, выделенных от больных. Это говорит о необходимости совершенствовать применяемые методики определения токсигенности культур.

Результаты реакции агглютинации атипичных культур, выделенных в условиях различной эпидемиологической обстановки, показали наличие тех же закономерностей для серологических свойств, которые были отмечены нами при изучении морфологии и биохимии культур. Атипичность культур, выделенных в благополучном районе, по данным серологии была более глубокой, чем в неблагополучных районах. Так, в благополучном районе положительную реакцию агглютинации давали 26% атипичных культур, в неблагополучных - 19%.

Одним из основных свойств дифтерийной палочки является способность к токсинообразованию. Токсиногенез коринебактерии дифтерии детерминируется геном, содержащимся в профаге, следовательно, основное средство агрессии - токсинообразование не связано с хромосомой бактерий.
 
Дифтерийный токсин представляет собой белок с молекулярной массой 6200 дальтон. Сила токсина определяется путем постановки внутрикожных проб по наличию некротического действия и по воздействию на восприимчивых животных (летальное действие). Сила токсина измеряется с помощью минимальной смертельной дозы, представляющей собой то наименьшее количество токсина, которое способно вызывать гибель гвинейской свинки массой 250 г на 4-5-е сутки при внутрибрюшинном введении. Токсин обладает антигенными свойствами, которые сохраняются при обработке формалином, снимающим его ядовитые свойства. Это позволило использовать его для приготовления профилактического препарата.

Молекула токсина состоит из двух фрагментов, один из которых термостабилен и обладает ферментативной активностью, а второй термолабилен и выполняет протективную функцию. Доказано внутриклеточное синтезирование токсина с выделением его через канальцы клеточной стенки. Синтез токсина происходит при выращивании микроба в жидкой среде - мясо-пептонном бульоне с добавлением глюкозы, мальтозы и факторов роста при рН 7,8-8,0.

По последним данным, дифтерийный токсин является продуктом вирусного происхождения. В качестве подтверждения И. В. Чистякова выдвигает способность нетоксигенных коринебактерии превращаться в токсигенные под влиянием фага. Возможность конверсии нетоксигенных культур в токсигенные была подтверждена в опытах на одноклеточных культурах. Описанный феномен носит название лизогенной конверсии. С помощью умеренных вирусов, полученных из токсигенных штаммов gravis, удалось конвертировать нетоксигенный вариант коринебактерии дифтерии gravis в токсигенный.

Э. В.Бакулина, М.Д.Крылова предположили, что очаговая конверсия может иметь значение в эпидемическом процессе. В связи с этим было начато изучение ее роли в формировании токсигенных штаммов коринебактерий дифтерии в природе. Была показана возможность осуществления конверсии токсигенности не только в системах фаг - бактерии, но и в природных условиях. Но среди местных культур этот процесс, по данным ряда исследователей, осуществляется далеко не часто. Причинами этого, вероятно, являются отсутствие продуцентов умеренных фагов, отличная от эталонных штаммов фагочувствительность местных штаммов, в связи с чем они не могут быть реципиентами конвертирующих фагов известного спектра действия.

Только в части микробной популяции удавалась конверсия токсигенных свойств у дифтерийных палочек под действием стафилококковых и стрептококковых фагов. В работах последних лет вопрос фаговой конверсии в эпидемическом процессе получает еще более сдержанную оценку. Считают, что коринефаги tox+ в эпидемическом процессе дифтерии не играет самостоятельной роли. Носители нетоксигенных палочек могут инфицироваться фагом tox+ только вместе с токсигенным штаммом, а стафилококковые фаги не способны конвертировать нетоксигенные коринебактерии. Для осуществления конверсии в направлении токсигенности в организме человека необходимо, по-видимому, наличие близкого общения носителя, имеющего конвертирующий фаг, с носителем, выделяющим лизочувствительный к этому фагу штамм. Кроме способности к токсинообразованию дифтерийная бактерия обладает такими факторами патогенности, как гиалуронидаза, нейраминидаза, дезоксирибонуклеаза, каталаза, эстераза, пероксидаза. Изучение внеклеточных продуктов метаболизма показало отсутствие различий между токсигенными и нетоксигенными коринебактериями дифтерии.

В настоящее время для внутривидового типирования коринебактерии дифтерии кроме описанного выше биохимического метода могут быть использованы серологический и фаговый.

Наличие серологических типов обусловлено типоспецифическими, термостабильными, поверхностными и термолабильными антигенами.

Существует ряд схем серологического типирования. У нас в стране используется схема, предложенная В. С. Сусловой и М. В. Пелевиной, но она не может обеспечить классификацию всех нетоксигенных штаммов. Количество серологических типов растет. I. Ewing установила наличие 4 серологических типов - А, В, С и D; D. Robinson и A. Peeney 5 типов - I, II, III, IV и V. Л. П. Делягина выделила еще 2 серологических типа. Считают, что число серологических типов значительно больше, причем в основном за счет типа mitis. Из имеющихся немногочисленных данных литературы закономерностей в выделении того или иного серотипа при различных формах инфекционного процесса и различной эпидемиологической обстановки не установлено. Наряду с данными о различной агрессивности культур, принадлежащих к разным серологическим типам имеются сообщения, в которых отвергается связь серологического типа с патогенностью культур.

Характерно, что на различных территориях встречаются разные серологические типы. Серологическое типирование может быть использовано для эпидемиологического анализа.

В условиях спорадической заболеваемости, ограничения числа носителей, когда значительно сложнее поиски источника инфекции, приобретает значение метод фаготипирования, позволяющий подразделять коринебактерии на серологические и культуральные варианты. Маркирование может производиться по свойствам выделенных из культуры фагов и по чувствительности культуры к специфическим бактериофагам. Наиболее широко используется схема, предложенная R. Saragea и A. Maximesco. Она позволяет маркировать токсигенные и нетоксигенные штаммы всех культуральных вариантов. С помощью 22 типовых фагов культуры могут быть подразделены на 3 группы, в которых объединен 21 фаговариант: 1-я группа - токсигенные и нетоксигенные штаммы типа mitis (фаговарианты I, la, II, III); 2-я - токсигенные и нетоксигенные штаммы типа intermedins и нетоксигенные gravis (фаговарианты IV, V, VI, VII); 13 фаговариантов (от VIII до XIX) вошло в 3-ю группу, которая объединила gravis токсигенные штаммы.

Схема была апробирована на большом числе штаммов, выделенных в Румынии и полученных из музеев 14 стран. Фаготипирование было положительным у 62% штаммов, особенно успешно были промаркированы штаммы типа gravis. Среди последних принадлежность к одному из фаговариантов была установлена в 93%. Специфические реакции с типовыми фагами у токсигенных штаммов типа gravis по схеме этих авторов основаны на инфицировании штаммов различными вирусами.

В нашей стране исследования в области фаготипирования проводила М. Д. Крылова. Автор разработал схему фагового маркирования, в основу которой положен принцип, предложенный Williams и Rippon для типирования плазмокоагулирующих стафилококков: фаговариант обозначался названием типового фага, который его лизировал в тест-разведении. Фаги и фаговарианты в схеме М. Д. Крыловой обозначаются буквами латинского алфавита: прописными - фаги, дающие сливной и полусливной лизис, строчными - лизис в виде бляшек. На основании этого разработаны модифицированная схема фаготипирования нетоксигенных коринебактерии варианта gravis, и схема фаготипирования токсигенных коринебактерии варианта gravis.



Ваше имя:
Защита от автоматических сообщений:
Защита от автоматических сообщений Символы на картинке: